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A simple, dynamically consistent model of mixing and transport in Rossby-wave crit-
ical layers is obtained from the well-known Stewartson–Warn–Warn (SWW) solution
of Rossby-wave critical-layer theory. The SWW solution is thought to be a useful
conceptual model of Rossby-wave breaking in the stratosphere. Chaotic advection in
the model is a consequence of the interaction between a stationary and a transient
Rossby wave.

Mixing and transport are characterized separately with a number of quantitative
diagnostics (e.g. mean-square dispersion, lobe dynamics, and spectral moments), and
with particular emphasis on the dynamics of the tracer field itself. The parameter de-
pendences of the diagnostics are examined: transport tends to increase monotonically
with increasing perturbation amplitude whereas mixing does not. The robustness of
the results is investigated by stochastically perturbing the transient-wave phase speed.
The two-wave chaotic advection model is contrasted with a stochastic single-wave
model. It is shown that the effects of chaotic advection cannot be captured by
stochasticity alone.

1. Introduction
The mixing and transport of tracer is a subject of great importance in many

branches of fluid dynamics. In applications, the subject has traditionally been
approached by appealing to an analogy between the kinetic motion of molecules and
the eddy motion of fluid parcels. This leads to a flux–gradient relation wherein the
flux of tracer by eddy motions is linearly related to the mean tracer gradient. As
has long been appreciated, however, flux–gradient relations, when applied to fluid
dynamics, have many deficiencies (see e.g. Tennekes & Lumley 1972; McIntyre 1992,
§10). Most notably, the separation of scales that exists in kinetic theory between
the length scale characterizing the (microscopic) transporting mechanism (i.e. the
mean-free path) and that characterizing the (macroscopic) mean tracer gradient may
not exist (Corrsin 1974). In atmospheric dynamics, the most spectacular example of
the failure of the flux–gradient relation is the wintertime Antarctic stratospheric polar
vortex (e.g. McIntyre 1989): the spatial scale of the eddy motion is much greater
than the scale of the tracer gradients, and the tracer flux is smallest where the tracer
gradient is largest.

An alternative approach to mixing and transport is offered by chaotic advection
(e.g. Aref 1984; Ottino 1989). Chaotic advection, which has received considerable
attention in recent years, describes a situation wherein regular Eulerian velocity
fields yield chaotic particle trajectories. For two-dimensional incompressible flow, the
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equations of motion for the particle trajectories constitute a Hamiltonian system and
methods from Hamiltonian dynamical systems theory (e.g. MacKay & Meiss 1987)
can be used. The phase-space geometry of these systems consists of regular and
chaotic regions. In the case of time-periodic or 1.5 degree-of-freedom systems, regular
regions are composed of invariant tori, which act as barriers to transport; these
invariant tori are destroyed in chaotic regions, where there is also enhanced mixing.
This kind of spatial inhomogeneity, in particular the occurrence of transport barriers,
has much in common with the observed behaviour of tracers in geophysical fluids.

Chaotic advection has been extensively studied in the context of low-Reynolds-
number Stokes flow (e.g. Aref & Balachandar 1986; Chaiken et al. 1986; Jana,
Metcalfe & Ottino 1994). In these studies time dependence in the (Eulerian) velocity
field is generated through motion of the boundaries: typically the boundary velocities
alternate between several distinct values. A mixing ‘protocol’ is defined by the
(instantaneous) boundary velocities and by the duration of time for which they are
maintained. Because of the Stokes flow condition, transient effects are negligible
and the velocity field is determined instantaneously by the boundary motion: it is
externally specified, i.e. generated kinematically. Although weak transience can be
studied within this framework (see Dutta & Chevray 1995), the relevance of chaotic
advection to a situation in which the velocity is not externally imposed remains to
be established. As chaotic advection models are inherently kinematical – effectively,
the stream function must be prescribed – an important question is whether such
models, when applied to dynamically generated phenomena, are consistent with the
full dynamics: are they dynamically consistent?

In geophysical fluid dynamics, there have been several previous applications of
chaotic advection to dynamically generated phenomena. Most of these applica-
tions have utilized ‘two-wave’ models, where the stream function (equivalently, the
Hamiltonian) is given by the superposition of a stationary and a travelling wave, i.e.

ψ(x, y, t) = ψ0(x, y) + εψ1(x, y, t), (1.1)

where ε is a small perturbation parameter and ψ1 is periodic in t. In this way the
perturbation is a continuous function of time; for geophysical phenomena this is more
plausible than the discontinuous variations of the Stokes flow studies. The first two-
wave model was that of Weiss & Knobloch (1989), who showed, using bifurcation
theory, that the stream function for binary fluid convection is of the above form near
the secondary bifurcation from travelling to modulated waves. Their model, despite
its kinematical form, is a direct consequence of the full dynamical equations, and is
thus dynamically consistent (near the secondary bifurcation).

The problem with two-wave models is that they will generally not be consis-
tent with the full dynamics. Unlike the Stokes flow studies, where any imposed
velocity field is physically realizable, in most geophysical applications one can-
not arbitrarily impose a velocity field. Dynamical consistency has indeed been a
problem with the (inviscid) studies that have followed Weiss & Knobloch (1989) –
work by Cox et al. (1990) on chaotic advection by Rossby-like waves, Pierrehumbert
(1991a,b) on modulated Rossby waves,† Samelson (1992) on Gulf Stream meanders,
and del-Castillo-Negrete & Morrison (1993) (hereafter referred to as DM) on Rossby

† Pierrehumbert (1991b) also performed some dynamically consistent simulations of the
two-dimensional Euler equations. However, the velocity field was not time-periodic, and of course
could not be represented analytically.
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waves in shear. These models are completely kinematic; they are derived from
heuristic arguments and not from the governing equations.

The dynamical consistency problem may be seen in the following way. For two-
dimensional vorticity-conserving fluids, the vorticity q = L(ψ), where L is a differ-
ential operator on the stream function ψ; therefore, if ψ is time-periodic, then q is
time-periodic as well and chaotic advection is possible only when the vorticity field
has already been homogenized (cf. Pierrehumbert 1991a and DM) – a constraint
which cannot be satisfied except in special cases such as irrotational flow (Cox et
al. 1990), or the flow around a Kida vortex (Polvani & Wisdom 1990). There is
thus a fundamental discrepancy between these chaotic advection models and the
two-dimensional vorticity-conserving fluids they are intended to describe (unless one
restricts attention to flow regimes where the vorticity can be regarded as piecewise
constant). The problem is particularly serious if one is interested in transport across
a strong (potential) vorticity gradient, as, for example, occurs along the edge of the
stratospheric polar vortex.

Nonetheless, time-periodic two-wave models merit further consideration. They are
conceptually elegant and the physical mechanism underlying them should be robust.
But if they are to be applied to large-scale, high-Reynolds-number, geophysical flows,
where the (potential) vorticity is materially conserved to a good approximation on
time scales well in excess of the eddy turnaround time, how then is this contradiction
between periodic velocity fields and chaotic vorticity fields to be resolved? As has
been articulated most clearly by Pierrehumbert (1991b) and Samelson (1996), periodic
velocity fields can coexist with chaotic vorticity fields if there exists a separation of
scales between the coarse- and fine-grained vorticity. If the velocity is dominantly
associated with the coarse-grained vorticity, then the fine-grained vorticity is essentially
decoupled from the velocity. This means that the fine-grained vorticity can behave as
a (chaotic) passive tracer and that a dynamically consistent model can be constructed.

This viewpoint can be made mathematically precise within the context of critical-
layer theory. Critical-layer theory (e.g. Stewartson 1981; Maslowe 1986) describes
what happens in the vicinity of critical lines, where the difference between the basic-
state velocity and the phase speed of a wave is small and where, for sufficiently
weak viscosity, nonlinear effects are important. Such regions are of great physical
importance because there is strong mixing and transport in (perturbed) critical
layers. The Stewartson–Warn–Warn (SWW) solution, which describes the nonlinear
development of a forced Rossby-wave critical layer in an inviscid linear shear flow
(Stewartson 1978; Warn & Warn 1978), forms the basis of our model. The SWW
solution has recently attracted interest because it is thought to be a useful conceptual
model of Rossby-wave breaking events in the stratosphere (e.g. Juckes & McIntyre
1987): large-amplitude, quasi-stationary, upward-propagating Rossby waves break in
the stratosphere, leading to a region of intense mixing and the formation of a ‘surf
zone’ (McIntyre & Palmer 1983). There is increasing evidence that much (if not
most) of the mixing in the vicinity of the stratospheric polar vortex takes place near
stagnation points of the flow (e.g. Polvani & Plumb 1992), around critical lines in
particular (Bowman 1996). Also, preliminary studies suggest that chaotic advection
occurs outside the vortex (Pierce & Fairlie 1993; Bowman 1993), and occasionally,
inside the vortex as well (Waugh et al. 1994).

Stewartson and Warn & Warn showed that with certain assumptions about the
flow, there exists a special solution for which, to leading order in the wave amplitude:
(i) the absolute vorticity in the inner critical-layer region behaves exactly like a
passive tracer; and (ii) the changing absolute vorticity in the critical layer affects the
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Figure 1. Unperturbed phase space geometry (i.e. streamlines of the SWW solution). A separatrix
divides the inner (closed) orbits from the outer (open) orbits.

distribution in the outer region but does not react back upon itself. At this order, the
absolute vorticity is advected by a steady stream function Ψ0 = − 1

2
y2 + cos x and the

equations of motion for a tracer particle with coordinates
(
xi(t), yi(t)

)
are

ẋi = −∂Ψ0

∂yi
, ẏi =

∂Ψ0

∂xi
. (1.2)

Equation (1.2) describes a cat’s eye or nonlinear resonance (see figure 1), the
prototypical phase-space geometry of nonlinear dynamics. With the identification
(x, y,Ψ0) → (q, p,−H), the phase space is identical to the physical space and Hamil-
ton’s equations for a nonlinear pendulum are recovered.

For the SWW solution, absolute vorticity contours wrap up inside the cat’s eye
(see figure 2 of Killworth & McIntyre 1985), but the filaments remain distinct: there
is stirring, not mixing (cf. Wiggins 1988), in the sense that small-scale structure is
developed but not homogenized.† There is no transport, in any meaningful sense,
because the entire phase space is partitioned by invariant curves; an important
manifestation of this is that the inner (closed) contours are divided from the outer
(open) contours by a separatrix.

Our model is obtained by perturbing the SWW solution with a time-dependent
travelling wave, which produces chaotic advection: tracer trajectories are no longer
constrained to follow steady vorticity isolines. Mixing occurs because distant tracer
particles can be repeatedly brought together and dispersed (stretching and folding)
in chaotic regions; transport occurs because tracers can be displaced meridionally
where the invariant tori have been destroyed. Furthermore, in chaotic regions particle
trajectories separate from one another at an exponential rate (the separation is merely
algebraic in regular regions).

It can be shown that within the critical layer, the model’s vorticity field remains
decoupled from the advecting stream function. There can thus be chaotic mixing
and transport even when the vorticity field has not been homogenized; the model
is dynamically consistent to leading order. Pierrehumbert (1991b) was the first to
suggest that the SWW solution could be used in a chaotic advection model.

† Of course in the long-time limit stirring leads to homogenization – and thus mixing – at any
given scale; nevertheless, the distinction is clear enough for finite times. In the absence of diffusion,
homogenization is to be associated with coarse-graining of the tracer field.
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This paper is primarily concerned with a quantitative characterization of mixing
and transport in this two-wave model. For the purposes of this work we associate
mixing (in the absence of diffusion) with the homogenization (in a coarse-grained sense)
of small-scale structure† and distinguish it from stirring, which is to be associated
with the development of small-scale structure. More general definitions exist (see Aref
1991 for a lucid discussion), but the sense in which we use these terms is consistent
with the conventional definition (again neglecting diffusion) that stirring refers to
an increase in the amount of interfacial surface area whereas mixing refers to the
redistribution of tracer across these surfaces; this is referred to as Eckart’s definition
in Aref (1991). We define transport to be the organized movement of tracer (e.g.
across a specified boundary).

It must be said that we still lack a comprehensive theoretical framework in which to
understand mixing and transport. There is at present no way in which the initial tracer
distribution can be taken fully into account. For representative initial distributions
we utilize a number of diagnostics in order to characterize mixing and transport
separately. Our approach differs from most previous chaotic advection studies in that
it emphasizes the tracer field rather than the stretching field (see e.g. Muzzio, Swanson
& Ottino 1991); in geophysical applications, it is often convenient to diagnose mixing
and transport directly from the tracer field. It is also because of the geophysical
orientation of this work that mixing and transport are characterized separately – this
is not an important issue in Stokes flow studies, where the domains are bounded and
the particle trajectories are usually far from being regular.

The paper is organized as follows. In § 2, the model is presented, its dynamical
consistency considered, and a preliminary analysis based on the resonance overlap cri-
terion carried out. In § 3 transport is characterized: lobe dynamics (see Wiggins 1992)
and brute-force computations are used to quantify the rate of transport; the mean-
square dispersion of an initial distribution is used to quantify its spatial extent. In § 4
mixing is characterized: two-point spatial correlation functions are used as a proxy for
the tracer spacing, and from them, tracer spectra and spectral moments are computed.
In § 5, parameter dependences of mixing and transport are considered and compared
with predictions from the Melnikov function. Stochastic perturbations are introduced
in § 6 and their effect on mixing and transport is contrasted with deterministic chaotic
advection. We conclude the paper with a Discussion in § 7.

2. The two-wave model
2.1. Derivation

Rossby-wave critical-layer theory describes what happens when monochromatic
Rossby waves impinge upon a critical line. Without loss of generality for a barotropic
flow, the Rossby waves can be taken to be stationary (i.e. with phase speed c = 0).
At the ‘northern’ boundary y = y0 > 0, an imposed stream function perturbation
φ = a cosmx generates southward-propagating Rossby waves of amplitude a. There
is a critical line at y = c = 0, and φ→ 0 as y → −∞. The stream function is obtained
using the method of matched asymptotic expansions, and the SWW solution is a
special case. Our model is a variant of the SWW solution wherein the advecting
stream function contains a travelling-wave component but the vorticity remains a
passive tracer to leading order.

† By small-scale structure we simply mean tracer structure that occurs at scales smaller than the
characteristic (Eulerian) velocity scale.
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The SWW solution is described in Appendix A. It yields the stream function (A 9),
namely

Ψ0 = − 1
2
Y 2 + cos x, (2.1)

where Y is a stretched meridional coordinate. The SWW solution is remarkable
because, to leading order in the stationary-wave amplitude ε: (i) the vorticity dis-
tribution inside the critical layer, q, behaves exactly like a passive tracer for it is
completely decoupled from the advecting stream function Ψ0; and (ii) Ψ0 is steady
even though q is not.

With this single-wave stream function, tracers are constrained to follow streamlines,
and, as discussed previously, there is neither mixing nor any meaningful transport.
For there to be efficient mixing and transport, the advecting stream function must
contain a time-dependent component. We choose to introduce time dependence in
the stream function through a transient Rossby wave (i.e. a travelling wave). This is
done by modifying the northern boundary condition to

φ = a cos x+ aε cos k(x− ĉt) at y = yo, ε < 1 . (2.2)

(Note that the transient-wave amplitude ε is to be distinguished from the stationary-
wave amplitude ε, and that here and henceforth Y and τ = ε1/2t are replaced with
y and t.) With this new boundary condition, the derivation outlined in Appendix A
proceeds as before with (A 5) replaced by

− πAY1(2y
1/2
o ) + BJ1(2y

1/2
o ) =

a

y
1/2
o

[
cos x+ ε cos k(x− ct)

]
, (2.3)

where c = ĉ/ε1/2. After non-dimensionalizing time, the advecting stream function is
given by

Ψ0 = − 1
2
y2 + cos x+ ε cos k(x− ct) (2.4)

in place of (A 9). Although there is nonlinear behaviour inside the critical layer, the
forcing can, for small ε, be developed as a linear superposition because the dynamics
outside the critical layer are linear at leading order (cf. Killworth & McIntyre 1985).

Equations (A 8) and (2.4) define the two-wave model. In exactly the same way
as the SWW solution, its vorticity and velocity fields are decoupled; the vorticity
does not need to be homogeneous for there to be chaotic mixing and transport.
The critical-layer framework (which includes assumptions (A 3) and (A 7)) does, as
anticipated, yield a model in which the small-scale vorticity is passively advected by
the large-scale flow. Tracer (i.e. particle) trajectories are, of course, determined by
(1.2).

Tracer evolution in the two-wave model and in the SWW solution are compared
in figure 2. SWW flow is a case in which tracer is stirred, but not mixed.

Critical lines have been discussed in at least one previous chaotic advection study.
In DM, the dynamical consistency problem is partially resolved by the fact that, by
construction, the meridional gradient of the basic-state absolute vorticity qo vanishes
at the critical lines (i.e. dqo(y)/dy = 0 at y = ci, ci being the phase speed of the
ith mode).† Our model, through its multiple-scale formalism and weakly nonlinear
dynamics, provides a natural extension of DM’s analysis. It does not, however,
completely circumvent the dynamical consistency problem because it is only correct
to leading order in the perturbation amplitude.

† DM consider regular neutral mode solutions to a Bickley jet.
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Figure 2. A comparison of the tracer evolution after 64 iterations (i.e. periods of the transient
wave) for (a) the SWW solution and (b) the two-wave model with ε = 0.1, k = 1, c = 3. The
initial distribution consists of 50 000 points in [−0.5, 0.5]× [1, 2]. (a) exhibits pure stirring; (b) is a
combination of stirring and mixing.

2.2. Preliminary analysis: resonance overlap

The SWW solution’s domain is unbounded in x, but for our model it is convenient to
impose periodic boundary conditions. This is permissible as the equations of motion

ẋi = yi , ẏi = − sin xi − εk sin k(xi − ct) (2.5)

are invariant under translations of ±2π in x if k is an integer.
With periodic boundary conditions, the hyperbolic fixed points for ε = 0 are given

by (x, y) = (±π, 0). For ε 6= 0, the dynamics are time dependent and it is necessary to
work on a Poincaré section. A Poincaré section for a time-periodic system is defined
by an initial choice of time t0 and a map x(t0 + nT ) → x(t0 + (n + 1)T ), where
T = 2π/kc. If t0 = 0, the fixed points (x, y) = (±π, 0) persist. Linearizing around
these fixed points, one can easily show that they will remain hyperbolic:

∀ε, k = ±1, ±3 . . . ; ∀ε < 1/k2, k = ±2, ±4 . . . . (2.6)

For ε = 0, the stable manifold of one hyperbolic fixed point coincides with the
unstable manifold of the other, forming a separatrix (e.g. Wiggins 1990) given by

ysep = ±21/2(1 + cos x)1/2 . (2.7)

In figure 3, Poincaré sections are plotted for k = 1, c = 3 and ε = 0.01, 0.1 and
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Figure 3. Poincaré sections for k = 1 and c = 3 for (a) ε = 0.01, (b) ε = 0.1, and (c) ε = 0.4.
The width of the chaotic region increases with ε, and the secondary cat’s eye results from the
transient-wave perturbation.

0.4. Comparing these figures with that for the unperturbed solution (figure 1), one
sees that the separatrix has split apart and that there is a chaotic layer surrounding
it. Whereas all the orbits in figure 1 are regular, there are now many chaotic
orbits. These orbits wander unpredictably in phase space within a region delimited by
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invariant tori, regular trajectories that persist under the perturbation. The width of
the chaotic layer increases markedly with ε. The simultaneous presence of regular and
chaotic orbits is a characteristic feature of chaotic advection models; it corresponds
to the physical fact that mixing and transport are spatially inhomogeneous. In
the stratosphere, for example, there is very strong mixing in certain regions as
well as barriers to transport at the edge of the polar vortex and in the subtropics
(Polvani, Waugh & Plumb 1995).

The other notable feature about figure 3 is that there are now two cat’s eyes,
a somewhat smaller cat’s eye having appeared around the line y = 3. Each wave
component creates a cat’s eye around y = ci, where ci is the phase speed of the
corresponding wave. For a single isolated wave, i.e. Ψ0 = − 1

2
y2 + cos ki(x − cit), the

equations of motion in a co-moving frame with new variables (x, y) = (x− cit, y) are

ẋ = y − ci , ẏ = −ki sin kix ,

and it follows that there will be a resonance (i.e. a critical layer) around y = ci.
Because of nonlinear interactions between the waves, however, the phase space is
not composed only of regular orbits and unperturbed cat’s eyes. Most prominently,
trajectories near the separatrices – those most sensitive to perturbations – are smeared
out in a chaotic layer.

A crude criterion for large-scale chaos (the destruction of all invariant tori between
the resonances) is that the unperturbed separatrices touch; this is the resonance
overlap criterion (r.o.c.) of Chirikov (see e.g. Lichtenberg & Lieberman 1992). The
r.o.c. is discussed at length in DM. Applying the r.o.c. to our model, we obtain the
following condition for large-scale chaos:

2(ε1/2 + 1) > | c2 − c1 | = | c | . (2.8)

This predicts that with c = 3, there will be large-scale chaos for ε = 0.4 but not for
ε = 0.1, as is observed in figure 3.

A symplectic integration algorithm (e.g. Yoshida 1990) has been used for all
numerical computations. Unlike conventional schemes such as fourth-order Runge–
Kutta, symplectic schemes preserve the symplectic structure of a Hamiltonian system;
for two-dimensional canonical systems, this means that phase-space area will be
conserved. Symplectic schemes also have very good error properties: even for large
time steps, they do not usually show any secular drift in the energy. We have employed
a fourth-order scheme due to McLachlan (1995).

Some of the calculations have been repeated with a fourth-order Runge–Kutta.
While this leads, for larger values of the time step, to the smearing of some invariant
tori, mixing and transport are nonetheless captured quite well.

3. Transport

With respect to transport, a useful distinction can be made between the rate of
transport and its spatial extent. The rate of transport is determined by measuring the
transport across a particular boundary (a local diagnostic), its spatial extent by the
breadth of the tracer distribution (a global diagnostic). We shall mostly concentrate
on the transport rate. In two-dimensional Hamiltonian systems, tracers are bounded
by invariant tori so the extent of transport is not so useful a diagnostic.
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Lobe dynamics (e.g. Wiggins 1992) is the starting point for our analysis. It
provides an exact description of phase-space transport across perturbed separa-
trices in two-dimensional area-preserving maps. It is based on the fact that the
stable and unstable manifolds of the map’s hyperbolic fixed points must obey
certain geometrical constraints. From these constraints, transport across the per-
turbed separatrix may be described in terms of the Poincaré-map iterates of a
special set of lobes formed by the perturbed stable and unstable manifolds, the
‘turnstile’. Lobe dynamics does not provide a definitive description of transport,
but with its connection to the model’s geometrical structure (which is ultimately
responsible for stretching and folding), it is in a sense a fundamental one. It also
provides useful insights into the mechanisms responsible for transport (e.g. trac-
ers can only be transported across the perturbed separatrix if they intersect the
turnstile).

For our purposes lobe dynamics is essentially a numerical method. Approximate
analytical methods have recently been developed (Rom-Kedar 1994), but we do not
make use of them. The relevance of lobe dynamics to our work is that it yields
numerical results that can be a benchmark for later comparison (see the brute-force
calculations below). Four basic steps are required in a numerical implementation. (i)
The stable and unstable manifolds must be computed. (ii) Boundaries are defined
as a union of the stable manifold of one fixed point and the unstable manifold of
the other. For convenience, the two halves of the boundary are joined at the point
x = 0. (See figure 4.) The regions so defined are labelled R1, R2 and R3, and points
initially in region i are referred to as species i. The notion of different ‘species’ is
simply a convenient way of incorporating information about the initial distribution
of the tracers. (iii) The turnstile lobes must be located. These are lobes that conduct
tracers across the separatrix; turnstile Li,j(1) conducts tracer from region i to j.
Because the map is orientation preserving, lobes are mapped in the ‘leap-frog’ manner
indicated by figure 4, and it follows that lobes can be mapped from the interior
(R2) to the exterior (R1 and R3) and vice versa: this constitutes transport. (iv) The
turnstile lobes are iterated forward in time and transport quantities are computed
from intersections of the images with the turnstiles. Lobe dynamics was first applied
to fluid dynamics by Rom-Kedar, Leonard & Wiggins (1990) (hereinafter referred to
as RLW).

At all times, the total transport from region i to j after one iteration of the Poincaré
map is given by the area of turnstile Li,j(1) – this is denoted by µ

(
Li,j(1)

)
, which is a

constant. But a more interesting quantity is the net transport of a species i into region
j during a specified Poincaré iterate n: ai,j(n), a flux. Letting fm

(
Li,j(1)

)
represent the

m-fold action of the Poincaré map on a turnstile, the transport of species 1 and 3 into
the cat’s eye is then given by

a1,2(n) = µ
(
L1,2(1)

)
+

n−1∑
m=1

[
µ

(
L1,2(1)

⋂
fm
(
L1,2(1)

))
− µ
(
L1,2(1)

⋂
fm
(
L2,1(1)

))
+µ

(
L2,1(1)

⋂
fm
(
L2,1(1)

))
− µ
(
L2,1(1)

⋂
fm
(
L1,2(1)

))
+µ

(
L3,2(1)

⋂
fm
(
L1,2(1)

))
− µ
(
L3,2(1)

⋂
fm
(
L2,1(1)

))
+µ

(
L2,3(1)

⋂
fm
(
L2,1(1)

))
− µ
(
L2,3(1)

⋂
fm
(
L1,2(1)

))]
, (3.1a)
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Figure 4. Configuration of the stable and unstable manifolds for ε = 0.1, k = 1, c = 3. The
northern boundary is drawn with thick lines. Region 1 is north of the boundaries, region 3 south,
and region 2 inside. The lobes formed by the manifolds are labelled Li,j(n), meaning that tracers are
conducted from region i to j after n iterations of the Poincaré map. The lobes are mapped by the
action of the Poincaré map in a ‘leap-frog’ manner: stippled areas are mapped to stippled areas,
hatched areas to hatched areas. The lobes L1,2(1) and L2,1(1) are referred to as turnstile lobes.

a3,2(n) = µ
(
L3,2(1)

)
+

n−1∑
m=1

[
µ

(
L3,2(1)

⋂
fm
(
L3,2(1)

))
− µ
(
L3,2(1)

⋂
fm
(
L2,3(1)

))
+µ

(
L2,3(1)

⋂
fm
(
L2,3(1)

))
− µ
(
L2,3(1)

⋂
fm
(
L3,2(1)

))
+µ

(
L1,2(1)

⋂
fm
(
L3,2(1)

))
− µ
(
L1,2(1)

⋂
fm
(
L2,3(1)

))
+µ

(
L2,1(1)

⋂
fm
(
L2,3(1)

))
− µ
(
L2,1(1)

⋂
fm
(
L3,2(1)

))]
. (3.1b)

(See Appendix B for details.) The transport of species 3 through the cat’s eye is given
by

a3,1(n) =

n−1∑
m=1

[
µ

(
L2,1(1)

⋂
fm
(
L3,2(1)

))
− µ
(
L2,1(1)

⋂
fm
(
L2,3(1)

))

+µ

(
L1,2(1)

⋂
fm
(
L2,3(1)

))
− µ
(
L1,2(1)

⋂
fm
(
L3,2(1)

))]
. (3.2)

For the cases we will be considering, a1,3(n) and a3,1(n) are found to be identically
zero. By conservation of area and conservation of species, it then follows that

a2,1(n) = a1,2(n), a2,3(n) = a3,2(n) . (3.3)

Transport into the cat’s eye equals transport out.
The transport expressions (3.1) are evaluated by placing a large number of points

inside each turnstile lobe and iterating. Because of the tremendous stretching and
distortion produced by the flow, it is not possible, as would ideally be the case, to
follow the lobe boundaries directly (cf. RLW; Franjione & Ottino 1987). The present
method is simple to understand and relatively straightforward to implement, though
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Figure 5. Lobe dynamics flux a2,1(n) for ε = 0.1, k = 1, c = 3. Approximately 50 000 points are
used in the calculation. The maximum possible flux is given by the area of the turnstile lobe L2,1(1).

the determination of the manifolds and the lobes is not unambiguous. A set of points
in the unstable linear eigenspace of each hyperbolic fixed point is iterated forward
in time (e.g. Parker & Chua 1992) and a third-order B-spline routine is then used to
interpolate between them. The initial set of points is chosen using the criterion that
the lobe areas be extremal with respect to variations in the locations of the points
along the linear eigenvectors. (An alternative method has also been used wherein the
initial points have been chosen by a numerical search around the critical points, but
this does not significantly alter the results.)
a2,1(n), the flux across the northern boundary of tracers initially inside the cat’s eye,

has been computed using approximately 50 000 points in each turnstile lobe (figure
5). The flux is initially constant because the turnstile L2,1(1) is completely filled with
species 2 and tracers transported across the separatrix have yet to return. For n > 3,
members of species 2 begin to be transported back across the boundary and the flux
decreases rapidly. For large n, the tracer distribution is very distorted and it intersects
the upper turnstiles alternately, leading to transport into and out of the cat’s eye.
The resulting fluctuations in the flux are therefore a kind of oscillation (cf. RLW).
The tendency of the flux to approach zero as n → ∞ is consistent with the tracer
distribution approaching a well-dispersed state.

In figure 6(a), a2,1 is plotted on log-log scales in order to examine how rapidly the
flux goes to zero. A linear slope is indicative of power-law-type behaviour. There
are two quasi-linear regimes: at early times (1 < n < 7), and at long times (n > 10).
From a least-squares fit, a2,1 ∼ n−0.51±0.04 in the first regime, and a2,1 ∼ n−0.71±0.02 in
the second. Summing the fluxes to obtain the cumulative transport, T2,1(n), of species
2 into region 1 as a function of time, there are two power-law regimes once more
(figure 6b): n0.77±0.01 and n0.370±0.001. There is analogous behaviour for ε = 0.01. The
occurrence of power-law regimes is noteworthy because it suggests a relationship with
anomalous diffusion (cf. Young 1988). Note that these results are heavily dependent
on the boundary conditions. Without periodic boundary conditions, there would be
one-way transport out of the cat’s eye (see Appendix B): tracers initially inside the
cat’s eye would be transported outside never to return.
a2,3 is approximately constant for ε = 0.1 and ε = 0.01. Because the turnstile

intersections are too small to be discerned by the numerical scheme, the time-
dependence of a2,3 is lost – it simply equals the area of the lower turnstile, µ

(
L2,3(1)

)
.
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Figure 6. (a) a2,1(n) for ε = 0.1, k = 1, c = 3 plotted on log-log scales. A linear slope is indicative
of power-law behaviour. (b) T2,1(n), the cumulative transport of species 2 into region 1, obtained
by summing a2,1(n).

The smallness of the transport is consistent with the Poincaré sections (the lower
separatrices do not exhibit any discernible splitting and the adjacent orbits are
regular), and with the r.o.c. (the lower separatrix is much further from the secondary
resonance). For these parameters, then, the lower turnstiles do not contribute to
any meaningful transport; the results are virtually unchanged if the lower turnstile is
ignored altogether.

The above results are robust: the fluxes are virtually unchanged when the number of
points placed inside the turnstile or the time step are varied. This is further confirmed
by a direct brute-force calculation wherein the fluxes are computed by counting
the number of tracers crossing the perturbed separatrix for an initial distribution
consisting of a large number of tracers inside region 2 (except for that portion
bounded by invariant tori). Normalizing the fluxes with respect to µ(L2,1(1)), there is
good agreement for ε = 0.1 (figure 7). Note, however, that without the lobe dynamics
framework a much larger number of tracers must be followed, the vast majority of
which do not initially lie inside the turnstile.

In lobe dynamics, a boundary defined by the perturbed stable and unstable mani-
folds is used to determine the initial distribution and the transport fluxes. It is thus of
interest to consider other boundaries. A reasonable choice for an alternative boundary
is the unperturbed separatrix. When the flux is measured across the unperturbed sep-
aratrix and the tracers are, as before, initially placed inside the perturbed separatrices,
the agreement with lobe dynamics is very good. The flux in this case is insensitive to
the precise location at which it is measured. But when the tracers are initially placed
inside the unperturbed separatrices, there is quasi-uniform decay (figure 8). (This flux
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Figure 7. Brute-force computation of a2,1(n) for ε = 0.1, k = 1, c = 3 using approximately 500 000
points. There is good agreement with lobe dynamics. The brute-force flux is normalized with respect
to µ(L2,1(1)).
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Figure 8. Brute-force flux across the unperturbed separatrix, a21c, for ε = 0.1, k = 1, c = 3 using
approximately 500 000 points. The initial distribution is bounded by the unperturbed separatrix
and there is quasi-uniform decay. The flux is normalized with respect to µ(L2,1(1)).

is referred to as a21c.) Previously, we observed two distinct regimes for a2,1 because the
initial distribution lies entirely to one side of the turnstile, and an adjustment stage
is required to reach a quasi-equilibrium distribution. In contrast, the initial tracer
distribution for a21c straddles the turnstile and no adjustment stage can be discerned.
Such rapid spatial variation in the transport properties violates one of the underlying
assumptions of diffusive or flux–gradient behaviour (cf. Corrsin 1974).

Let us now consider the spatial extent of transport. The spatial extent of meridional
transport is characterized by the mean-square dispersion in y,

σ2 =

〈(
y − 〈y〉

)2

〉
, (3.4)

where the angle brackets denote an average over the ensemble of particle positions.
For an initial distribution straddling the turnstile, σ2 increases rapidly for small n,
and quickly levels off; but for an identical distribution located to the interior of the
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Figure 9. σ2 vs. n for an initial distribution straddling the turnstile (dashed line + diamonds), and
for an initial distribution to the interior of the turnstile (solid line). In both cases ε = 0.1, k = 1, c = 3.
The initial distributions are [−0.25, 0.25] × [1.75, 2.25] and [−0.25, 0.25] × [1.25, 1.75], respectively.
The initial rate of increase is strongly dependent on the initial distribution, but saturation with
large n is observed in both cases.

turnstile, σ2 increases much more slowly, taking a longer time to saturate (figure 9).
The initial σ2 for these two distributions is the same. In both cases there is saturation
for large n because the existence of invariant tori in this 1.5 degree-of-freedom system
prevents the meridional dispersion from increasing without bound; the saturation
values are comparable because both initial distributions contain points in the same
chaotic region.

The results of figure 9 highlight a couple of important differences with respect
to diffusive behaviour. Most notably, there is a strong dependence on the initial
distribution: the initial increase in σ2 is much slower for the initial distribution
lying entirely to one side of the turnstile. Also, the saturation of σ2 is a completely
non-diffusive effect. For a purely diffusive system, σ2 ∼ t.

These results are consistent with those obtained by Schoeberl & Bacmeister (1993)
in computations of isentropic tracer trajectories from analysed stratospheric winds.
They showed that the initial increase in the meridional dispersion depended on the
orientation of the tracer field relative to the potential vorticity contours: the mean-
square dispersion either increased rapidly and levelled off, or was nearly constant
from the outset. Like our results, theirs indicate that transport depends crucially on
the initial tracer distribution and that it can be markedly non-diffusive. However,
the initial distribution of their non-dispersing cases consisted of tracers lying entirely
within non-breaking potential vorticity contours (corresponding roughly to invariant
tori); our calculations have been performed using initial distributions that, at least
partly, lie inside the chaotic region.
σ2 describes the variance of the tracers about the mean of the distribution. One

could also examine the variance of the individual tracer displacements, i.e.

σ̃2 =

〈(
(y(t)− y(0))− 〈y(t)− y(0)〉

)2

〉
. (3.5)

σ2 and σ̃2 differ in the choice of origin; for random walks, they approach the same
value as n → ∞ (random displacements are independent of the initial position). For
regular orbits, however, σ̃2 will display periodic variations in the individual tracer
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displacements that do not appear in σ2, the latter being a measure of the ensemble
variance. Consequently, we have used σ2 rather than σ̃2. (For the cases we have
considered, σ2 and σ̃2 are indeed almost identical for large n.)

Mezić & Wiggins (1994) have shown that, under conditions of non-ergodicity, σ̃2

asymptotically scales as t2 for periodic coordinates. A similar condition applies to σ2

for n→∞. This result does not apply here because y is not a periodic coordinate.

4. Mixing
We characterize mixing by the homogenization of small-scale structure in the tracer

field. (As alluded to earlier, ‘small-scale structure’ refers to features in the tracer field
that are smaller than the characteristic scale of the advecting velocity field, and
‘homogenization’ is to be interpreted in a coarse-grained sense.) The reason for this
definition is that it captures the important idea that mixing is a dynamical process. By
this we simply mean that mixing cannot be determined from the instantaneous tracer
field; rather, its time evolution must be studied. It thus follows that the diagnosis of
mixing is highly dependent on the initial conditions and that it will show a marked
scale dependence. A quantification of the spatial structure in some scale-dependent
manner is required.

The problem of instantaneous characterization of a tracer field has been considered
by Muzzio et al. (1991). (See Városi, Antonsen & Ott 1991 for another approach.)
They propose two means by which mixing can be characterized: (i) a distribution of
stretching values; and (ii) a distribution of striation thicknesses. Both of these are
probability density functions. From the time evolution of these quantities, one can
make inferences about the amount of mixing taking place. For technical reasons,
Muzzio et al. (1991) chose to emphasize the distribution of stretching values. They
showed that for properly randomized initial conditions, the distribution of stretching
values obeys single-parameter scaling; and in a subsequent paper (Muzzio et al. 1992),
that it may, after appropriate coarse-graining, obey multifractal scaling. However,
the connection between stretching and mixing is less clear for domains without fixed
boundaries, such as are relevant to geophysical applications. Furthermore, it is often
the case that one has information on the tracer field but not the stretching field (i.e.
the velocities). Thus we prefer to diagnose mixing directly from the tracer field.

When the tracer field is composed of discrete particles, as in this study, the natural
analogue of the distribution of striation thicknesses is the distribution of interparticle
separations. Following Pierrehumbert (1992), however, we opt for a spectral approach
rather than one based on probability distribution functions. A spectral approach is
useful because it has a clear physical interpretation. The progress of mixing at
different scales and at different times is clearly visible.

Let H(r) denote the distribution of tracer pairs lying within an interparticle separa-
tion r. (This is an integral from 0 to r of the distribution of interparticle separations.)
Assuming that the tracer field is isotropic, it can be shown (Pierrehumbert 1992) that
the isotropic power spectrum of the tracer distribution is of the form

C(κ) ∼ κ
∫ ∞

0

dH(r)

dr
J0(κr) dr , (4.1)

where J0 is a zeroth-order Bessel function and κ is the spatial wavenumber. This
expression is obtained after performing the angular integration of a continuous two-
dimensional Fourier transform of the tracer distribution. In order to calculate this
quantity numerically we discretize the interval [0, rmax], where rmax is greater than the
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maximum interparticle separation, into uniform divisions. In the runs described in
this section, we have used rmax = 8 and 40 000 uniform divisions, and we consider only
the first 200 modes. (The initial interparticle spacing corresponds to a wavenumber
κ ≈ 4000.)

There are several other technical points associated with the calculation of (4.1).
First, the normalization is arbitrary. Rather than normalizing the amplitudes to unity,
we simply normalize with respect to the number of tracer pairs. This is done because
the time evolution of the spectra must be considered in order to diagnose mixing;
consequently, a time-dependent normalization cannot be used. Second, in computing
C(κ), the number of tracer pairs increases quadratically with N. This places a strong
constraint on the number of particles that can be followed, especially when multiple
runs are required for each set of parameter values. Pierrehumbert (1994) has been
able to compute tracer spectra for a much larger number of tracer particles by taking
one-dimensional cuts of the tracer field.

An interesting question is the scaling of C(κ) with κ. If there is an extensive scaling
range for which H(r) ∼ rD (D is the correlation dimension), then it is easily shown
that (Pierrehumbert 1991b)

C(κ) ∼ κ1−D (4.2)

and thus C(κ) ∼ κ−1 as D → 2 (i.e. complete mixing of the tracer field).† The
power spectrum of tracer fluctuations in homogeneous two-dimensional turbulence is
conventionally expected to scale like κ−1 as well (e.g. Lesieur 1990). If, however, the
tracer distribution is patchy, or has localized fine-scale structure, then steeper spectra
are possible. This has been discussed by Saffman (1971) and Gilbert (1988) in the
context of two-dimensional turbulence. This mechanism is one possible explanation
for an approximately κ−2 spectrum found in both stratospheric measurements and
numerical simulations (Strahan & Mahlman 1994; Sirovich, Everson & Manin 1995;
Bacmeister et al. 1996).

In figure 10, C(κ) is plotted against κ for ε = 0 and ε = 0.1, with n increasing
geometrically from 1 to 64. The initial distribution consists of approximately 64 000
points inside f(L2,1(1)). While the spectrum for ε = 0 asymptotes to κ−1, beginning
at intermediate scales and then extending to smaller scales, the spectrum for ε = 0.1
asymptotes uniformly over a broad range of scales to something steeper than κ−1. (It
lies between κ−1 and κ−2.) This behaviour was also noted by Pierrehumbert (1991b).
It is not clear whether the spectra will remain steeper than κ−1 as the discrete par-
ticle distribution approaches a continuous one and t → ∞, although this is certainly
plausible. Some speculations on this phenomenon are provided by Pierrehumbert
(1994).

Other calculations have also been made with fewer points and divisions, with
comparable results.

Looking more closely at the spectral evolution in figure 10, differences between the
two cases become more apparent. We had previously characterized ε = 0 as a pure
stirring case (i.e. stirring without any mixing), and ε = 0.1 as a mixing case (i.e. stirring
first, then mixing). Let us now examine how these intuitive descriptions are reflected
in the spectra. For ε = 0, the evolution is basically uniform and the spectrum shifts
relatively smoothly to higher wavenumbers. Small scales are developed quickly, but
their decay is gradual, reflecting the lack of homogenization in this integrable case.
(This is in sharp contrast to pure diffusive behaviour, which would preferentially erode

† There are some subtleties associated with this limit (see Pierrehumbert 1992).



332 K. Ngan and T. G. Shepherd

100

10–1

10–2

10–3

10–4

ë–2

ë–1

100

10–1

10–2

10–3

10–4

ë–2

ë–1

100 101 102

ë

C(ë)

C(ë)

(a)

(b)

Figure 10. C(κ) vs. κ for n = 1 to 64. (a) ε = 0 and (b) ε = 0.1, k = 1, c = 3. n increases by powers
of two as one goes downwards. The initial distribution for both cases is identical and consists of
63 886 points inside f(L2,1(1)) (for ε = 0.1, k = 1, c = 3). The spectrum is computed from r = 0 to
r = 8 using 40 000 gridpoints.

the small scales.) For ε = 0.1, the behaviour is initially rather similar. Subsequently,
however, there is a much stronger decay at smaller scales. We identify this decay with
homogenization and mixing (in a coarse-grained sense). The fact that mixing occurs
first at larger scales, and only later at smaller scales, is in striking contrast to diffusive
behaviour (cf. Pierrehumbert 1991b).

The above analysis is largely qualitative in nature and it is predicated on our
knowledge that ε = 0 corresponds to a stirring case and ε = 0.1 to a mixing case. In
general this knowledge is not available a priori (for instance when we consider the
parameter dependence); some representative quantitative diagnostics are required.

The features identified in the power spectra can be crudely quantified with spec-
tral moments. By analogy with two-dimensional turbulence phenomenology (e.g.
Pedlosky 1987, §3.28), the centroid of the tracer spectrum, K1, and the dispersion
about the centroid, ∆K−K1

, are defined by

K1 =

∫ κmax

κmin

κC(κ) dκ∫ κmax

κmin

C(κ) dκ

, ∆K−K1
=

∫ κmax

κmin

(κ−K1)
2C(κ) dκ∫ κmax

κmin

C(κ) dκ

. (4.3)
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Figure 11. K1 and ∆K−K1
vs. n for the spectra of figure 10. ε = 0 (solid lines) and

ε = 0.1, k = 1, c = 3 (dashed lines + diamonds).

The spectral moments are computed with κmin = 1 and κmax = 200. We expect
that as small scales develop, K1 will increase markedly, and that as small scales are
homogenized, ∆K−K1

will decrease markedly. In practice we have found the qualitative
behaviour of both diagnostics to be similar in most cases.

In figure 11, K1 and ∆K−K1
are shown for ε = 0 and ε = 0.1. For ε = 0, the

development of small-scale structure is prolonged relative to ε = 0.1. This is another
illustration of the transient wave’s effect on mixing. The diagnostics confirm that,
at least in the context of the two-wave model, mixing can be viewed as a two-step
process: (i) the development of small scales (reflected here in increasing K1), and (ii)
their subsequent homogenization (reflected here in decreasing ∆K−K1

).

5. Parameter dependence
The last two sections have focused primarily on the parameters ε = 0.1, k = 1, c =

3; in this section we consider the parameter dependence of mixing and transport.
The parameter dependence of mixing and transport has not been extensively

considered in previous chaotic advection studies. In Stokes flow studies, the emphasis
has been on the optimization of mixing rather than on parameter dependence per se
(cf. Jana et al. 1994). In the geophysical context, however, the parameter dependence
of mixing and transport must be considered because one cannot restrict one’s attention
to a single set of parameters.

A Melnikov analysis is the simplest way to examine the parameter dependence
of transport (see e.g. Samelson 1992), albeit only in the vicinity of the separatrix.
The total transport across the perturbed separatrix is determined by the turnstile
areas, and the turnstile areas may be estimated with the Melnikov function. While
convenient, this approach is, however, only an approximate one. Apart from the
approximate nature of the Melnikov function itself, the time-dependent nature of
transport – and especially the role of the initial tracer distribution – is neglected.

The Melnikov function (e.g. Wiggins 1990; Drazin 1992) measures, on a specified
Poincaré section, the separation between the stable and unstable manifolds connecting
the hyperbolic fixed points. For the dynamical system

ẋ = f1(x, y) + εg1(x, y, t), ẏ = f2(x, y) + εg2(x, y, t) , (5.1)

where g1, g2 are periodic functions of time, the Melnikov function is given by an
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ε k c Measured area Melnikov area Difference (%)

0.01 1 3 0.0136 ± 0.0001 0.0135 1
0.1 1 3 0.1330 ± 0.0001 0.1354 2
0.1 1 2.5 0.2473 ± 0.0001 0.2476 0.1
0.1 3 3 0.0253 ± 0.0001 0.0252 0.4
0.2 1 3 0.2703 ± 0.0005 0.2710 0.3

Table 1. Turnstile lobe areas. The measured area is an average over several lobes (typically 3–5
lobes are used; see figure 4). The error is given by the standard deviation.

integral over the unperturbed separatrix q(t; t0):

M(th; t0) =

∫ ∞
−∞
f
(
q(t; t0)

)
∧ g
(
q(t; t0), t+ th

)
dt , (5.2)

where t0 denotes the phase of the Poincaré section, th parameterizes distance along
the unperturbed separatrix, and ‘∧’ denotes the wedge product f ∧ g = f1g2 − g1f2.
The splitting between the manifolds is given by

d(th; t0) = ε
M(th; t0)

| f(q(th; t0)) |
+ O(ε2). (5.3)

Because the perturbation is time-periodic, the time interval between the primary
intersection points of a given lobe, th2 − th1, equals T/2, T being the period of the
perturbation. For a specified Poincaré section, the area of a given lobe L can then be
computed by integrating the Melnikov function from th1 to th2 (e.g. Wiggins 1992):

µ(L) = ε

∫ th2

th1

|M(th) | dth + O(ε2) . (5.4)

Repeating this procedure for different k and c, the parameter dependence of the total
transport across the upper (or lower) separatrix can be estimated.

The Melnikov function for the upper separatrix of (2.5) may be written as

M(th) =

∫ ∞
−∞

2

cosh t

{
−k sin

[
k
(
4arctan(et)− π

)]
cos kc(t+ th)

+k cos

[
k
(
4arctan(et)− π

)]
sin kc(t+ th)

}
dt . (5.5)

(The Poincaré section is defined at times t = nπ, and q(0) has been chosen to
correspond to (x, y) = (0, 2).) As a check, the lobe areas predicted by the Melnikov
function are compared with a direct computation in table 1. The agreement is
acceptable, even for relatively large values of ε.

Using this expression, µ(L)/ε is plotted against k (at fixed c) and against c (at fixed
k) in figure 12. Except for large values of k and c, for which the Melnikov function
is small, exponential decay is observed throughout the range of k and c. Exponential
decay is significant because it suggests a particularly simple characterization of the
parameter dependence.

With respect to the ε dependence, the Melnikov function predicts that the total
transport is directly proportional to ε for small ε. It can be seen that σ2 (n = 64) is a
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Figure 12. Variation of µ(L)/ε with (a) k (at fixed c) and with (b) c (at fixed k). There is
exponential decay except for large k and c.

monotonic function of ε (figure 13), though a decidedly nonlinear one.† A nonlinear
dependence of transport on perturbation amplitude was also found by Weiss (1991)
for a travelling wave map.

One of the main results from our analysis of the rate and spatial extent of transport
is that transport can show a non-trivial time dependence – there may exist early and
late regimes. This kind of time dependence arises from the periodic boundary
conditions and the initial tracer distribution; it cannot be captured by a Melnikov
function alone. To illustrate this point, we now consider T2,1, the cumulative transport
of species 2 into region 1 (i.e. out of the cat’s eye). T2,1 is plotted against t for k = 1
and k = 3 in figure 14(a), with ε = 0.1 and c = 3 in both cases. A Melnikov analysis
predicts that the ratio of these quantities is constant, namely

T2,1(t; εi, ki, ci)

T2,1(t; εj , kj , cj)
=

µ(L; εi, ki, ci)

µ(L; εj , kj , cj)

T (εj , kj , cj)

T (εi, ki, ci)
, (5.6)

where T (ε, k, c) is the period of the perturbation. This is clearly not the case: the

† In this and several subsequent figures, where parameter dependences are considered, the initial
tracer distribution is defined by the lobe iterate f(L2,1(1)) for a single value of ε, ε = 0.1. Since
these figures correspond to long-time behaviour (n = 64), for which the tracer distribution is
quasi-homogenized, we expect the choice of initial condition to be relatively unimportant. This has
been confirmed using f(L2,1(1)) for another value of ε, ε = 0.2.
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Figure 13. σ2(n = 64) vs. ε for k = 1, c = 3 using 63 886 points in f(L2,1(1)) (for ε = 0.1). The
mean-square dispersion varies monotonically, but nonlinearly, with ε.
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Figure 14. Effect of k on transport. (a) T2,1(t) for k = 1 (solid line) and k = 3 (dashed line). ε = 0.1
and c = 3 in both cases. Note that T2,1 is plotted against t and not n. (b) T2,1(t; k = 1)/T2,1(t; k = 3).

expression (5.6) is initially correct, but it begins to fail at longer times as the ratio of
T2,1(k = 1) to T2,1(k = 3) decreases over the course of the integration (figure 14b). The
transport of individual species need not follow the total transport (of phase space).
While of obvious importance, the separatrix splitting is not – as was touched upon
in §3 – the only factor influencing transport.

Perhaps the most serious limitation of the Melnikov function is that it does not
directly relate to mixing. Strictly speaking, the separatrix splitting only applies to
transport across the separatrix. It has, nevertheless, been suggested that in spite
of its obvious limitations the Melnikov function is perhaps the best diagnostic for
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Figure 15. Variation of ∆K−K1
(n = 64) with ε for k = 1 and c = 3. The initial distribution consists

of 63 886 points inside f(L2,1(1)) (for ε = 0.1). The dependence on ε is not monotonic.

determining the efficiency of mixing (Jana et al. 1994). That mixing can, however,
exhibit a non-monotonic response to variations in the perturbation strength (and
therefore in the Melnikov function) has been noted previously. In a study of the flow
between two eccentrically rotating cylinders, Aref & Balachandar (1986) observed
that, for given geometric parameters, mixing is maximized for a particular modulation
frequency.

Direct numerical computations are required to determine the parameter dependence
of mixing. To this end, ∆K−K1

has been computed after 64 iterations for a range
of ε values (figure 15). As expected, ∆K−K1

does not change monotonically with
ε: it decreases initially with ε, reaches a minimum around ε = 0.07, and increases
from that point on. Recalling that small ∆K−K1

is indicative of strong mixing (i.e. a
nearly homogenized state), this suggests that there is indeed an optimal value of ε
for which the mixing can be maximized, and that increasing the perturbation beyond
this value diminishes the amount of mixing that occurs during a fixed time interval.
These results are relatively robust to changes in the number of points and in the
discretization.

This behaviour is the net result of two competing effects. One is that the stretching
rate increases with ε; the other is that the size of the chaotic region also increases
with ε (cf. figure 3). The first of these effects tends to increase the mixing, while the
second tends to decrease it. Since the stretching rate will eventually saturate, one
expects the mixing to be maximized for some value of ε. To see this, consider figure
16, where the ensemble-averaged finite-time (to n = 64) Liapunov exponent is plotted
against ε. The slope of this plot decreases noticeably around ε = 0.05. Assuming that
the size of the chaotic region grows linearly with ε for small ε – which is a reasonable
assumption inasmuch as the lobe areas determined by the Melnikov function are quite
good (table 1) – this is consistent with the mixing being maximized around ε = 0.07.

6. Noise
To this point, the parameters have all been constants. Time-dependent parameters

constitute a natural extension of the two-wave model and should be considered.
We have considered a particularly simple form for the time dependence: stochastic
variation of the phase speed. In the stratosphere, for example, the period of transient
waves is certainly not constant. Perturbations of this type are referred to as multi-
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Figure 16. Ensemble-averaged finite-time Liapunov exponent 〈λ〉 vs. ε for k = 1, c = 3. An
ensemble of 34 000 points initially lying inside f(L2,1(1)) (for ε = 0.1) is used (the results are nearly
identical for 64 000 points). The averages are computed after n = 64 iterations. The perturbed
trajectory is initially displaced by an amount δ = 4 × 10−7 in a random orientation, and the
renormalization is done after every time step.

plicative noise (e.g. van Kampen 1981) and should be distinguished from additive
noise, wherein a noise term is appended to the equations of motion. The effects of
additive noise are better understood, but for nonlinear systems the introduction of
additive noise may not be justifiable. Nonetheless, the introduction of multiplicative
noise into the two-wave model is heuristic; it simply provides a test of the model’s
robustness and helps clarify the relationship between chaos, regular motion, and
mixing.

We perturb an average phase speed c0 with a noise term of amplitude δc, i.e.

c̃ = c0 + 1
2
δcη , (6.1)

where η is a stochastic variable in [−1, 1] with a constant autocorrelation time τ,
i.e. η changes values only at times mτ (where m is a positive integer). The system
remains Hamiltonian with this stochastic perturbation, though there is a different
Hamiltonian system after each interval of τ. Visually, the location of the secondary
resonance shifts with the perturbation. The effects of this can be seen in the effective
Poincaré section of figure 17, where the orbits are smeared out almost completely (cf.
figure 3b).† Because invariant tori do not (formally) exist in stochastically perturbed
systems, the tracers can now be carried much further in y.

Let us first examine some qualitative effects. In figure 18, both σ2 and T21c, the
integrated flux out of the cat’s eye, are seen to increase with decreasing τ. This is in
accord with the naive expectation that the rate and extent of meridional transport
increase monotonically with the stochastic perturbation. It is also consistent with the
observation of Aref & Jones (1989) that (additive) noise tends to enhance particle
separation. In figure 19, ∆K−K1

is plotted against n for several values of τ. Here,
decreasing τ leads to a much less rapid drop-off of ∆K−K1

with time. This suggests
that the mixing (at large times) decreases with decreasing τ. (The small reductions in
∆K−K1

for small n are not relevant to mixing as we have defined it.)

† The smearing-out also reflects the fact that a Poincaré section is no longer well-defined because
the period of the perturbation is not constant. This phenomenon is, nonetheless, real: the Poincaré
sections are similar when ε is stochastically perturbed in place of c.
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Figure 17. Effective Poincaré section for a stochastic perturbation to ε = 0.1, k = 1, c = 3:
δc = 0.1, τ = 3T . Note that the smearing-out is almost complete.
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Figure 18. Qualitative effect of the autocorrelation time τ on transport. (a) σ2 and (b) T21c vs. n
for ε = 0.1, k = 1, c = 3 and δc = 0.25. Log-log scales are used in both cases. Transport increases as
τ is reduced from ∞ (i.e. deterministic dynamics) to 5T and 0.5T . The initial distribution consists
of approximately 500 000 points inside the unperturbed separatrix. T21c is computed by normalizing
the fluxes with respect to µ(L2,1(1)).
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Figure 19. Qualitative effect of the autocorrelation time τ on mixing. ∆K−K1
vs. n for ε = 0.1,

k = 1, c = 3 and δc = 0.2. Mixing decreases as τ is reduced from ∞ (i.e. deterministic dynamics)
to 4T and 0.5T . The initial distribution consists of 63 886 points inside f(L2,1(1)) (for ε = 0.1 and
δc = 0).

At first sight, these results seem to be similar to those for the ε dependence (beyond
the optimal-mixing value of ε): increasing stochasticity (i.e. decreasing τ) tends to
increase transport, but decrease mixing. In fact, however, the parameter dependences
of mixing and transport on ε and 1/τ are different. Figure 20 shows the dependence
of σ2(n = 64) and ∆K−K1

(n = 64) on τ, based on average values from an ensemble
of eight realizations. As 1/τ is increased, σ2 increases until τ ≈ T (recall that T
is the period of the travelling-wave perturbation), after which it decreases; on the
other hand, ∆K−K1

increases quasi-monotonically throughout. In contrast, when ε is
increased (see figures 13 and 15), it is σ2 that increases monotonically while ∆K−K1

decreases and then increases. It is evident that chaotic advection and stochasticity
are not equivalent, though their effects are qualitatively similar for weak stochasticity
(τ � T ) and moderate ε. (Note that less mixing has occurred after 64 iterations for
the stochastically perturbed case than for the unperturbed ε = 0.1 case (cf. figure 11).)

As with the ε dependence, it is instructive to examine the dependence on τ of the
finite-time ensemble-averaged Liapunov exponent (figure 21). The stretching decreases
steadily with increasing stochasticity, the decrease being greatest for τ < 2T . Although
it is true that the area of the ‘chaotic region’ is no longer precisely defined, it does
(based on figure 20a) appear to increase with 1/τ, at least for τ > T . This means
that the competition between increasing stretching (which generally enhances mixing)
and increasing size of the chaotic region (which generally diminishes mixing) seen in
figure 15 is not present; here, the two effects are complementary and mixing decreases
monotonically with τ. Indeed, it is this complementarity that explains why mixing is
slower with the stochastically perturbed two-wave model than with the deterministic
one for the same ε and n (cf. figure 11): the stretching for τ ∈ [0, 10T ] is weaker
(cf. figure 16), and the dispersion of tracer is greater (cf. figure 13). In other
words, mixing is delayed in the stochastically perturbed two-wave model because the
preceding development of small scales is slower. This is consistent with the notion
that small scales tend to develop exponentially fast in chaotic advection models, but
only algebraically fast in stochastic models.

Further insight into this behaviour may be gained by examining the spectral
evolution of a single realization of the tracer field (figure 22). The shallowness of the
spectra for large n is particularly striking.
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Figure 20. Variation of (a) σ2(n = 64) and (b) ∆K−K1
(n = 64) with τ. ε = 0.1, k = 1, c = 3 and

δc = 0.2. The initial distribution consists of 33 709 points inside f(L2,1(1)) (for ε = 0.1 and δc = 0).
The average values are determined from an ensemble of eight realizations; the error bars are given
by the standard deviation. In (b), the spectrum is computed using interparticle separations from 0
to 8 on a grid of 40 000 points.

Another interesting feature about figure 20 is that the peak in σ2(n = 64) occurs
at τ = T . This is suggestive of stochastic resonance, a generic phenomenon in
stochastically perturbed systems (e.g. Moss, Bulsara & Shlesinger 1993). We have
confirmed, for several different values of k, c, and δc, that the peak in σ2 always
occurs around τ = T . (Actually, the peaks have been found between τ = 0.7T and
τ = 1.2T .)

A comparison of the effects of stochasticity and (deterministic) chaotic advection
in the two-wave model is made difficult by their mutual interaction. We thus consider
a model wherein mixing is generated by stochasticity alone. This is done by adding
multiplicative noise to the SWW solution, i.e.

Ψ0 = − 1
2
y2 + cos(x− c̃t) . (6.2)

Mixing in the stochastic single-wave model has been compared with mixing in the non-
stochastic single-wave model (ε = 0) and the chaotic (but non-stochastic) two-wave
model (ε = 0.1, δc = 0) from n = 1 to 64 iterations (not shown). The development of
small-scale structure is severely retarded (with respect to ε = 0.1) for the stochastically
perturbed single wave, and the onset of homogenization is correspondingly delayed.

The parameter dependences of σ2(n = 64) and ∆K−K1
(n = 64) (figure 23) are similar

to those for the stochastically perturbed two-wave model (figure 20), except that there
is now no sign of any drop in σ2 for small τ. The behaviour is quasi-monotonic in
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Figure 21. Ensemble-averaged finite-time Liapunov exponent 〈λ〉 for ε = 0.1, k = 1, c = 3, δc = 0.2
and various τ. The averages are computed after n = 64 iterations from an ensemble of eight
realizations, and the error bars are given by the standard deviation. Other details of the calculation
are as in figure 16.
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Figure 22. C(κ) vs. κ for n = 1 to 64 for ε = 0.1, k = 1, c = 3 and δc = 0.2, τ = 0.5T . n increases
by powers of two as one goes downwards. The initial distribution consists of 63 886 points inside
f(L2,1(1)) (for ε = 0.1 and δc = 0) and 40 000 divisions are used; other details of the calculation are
as in figure 10. Note the shallowness of the spectra.

both cases: with decreasing τ, mixing decreases while transport increases. (It is worth
noting that the stochastically perturbed single-wave model is the only case we have
found for which the behaviour of K1 does not closely resemble that of ∆K−K1

.)

A stochastically perturbed single wave has been proposed as a model for diffusive
transport due to breaking Rossby waves (Bowman 1995). Our results, however,
suggest that while such a model will, for finite times, yield faster mixing than will
the unperturbed single wave, this will not be the case for the two-wave model.
Transport is much stronger in the stochastically perturbed single-wave model than in
the deterministic two-wave model (cf. figure 13); but mixing is weaker (cf. figure 15).
The effects of chaotic advection cannot be captured by stochasticity alone. (It must
be emphasized that we have considered only weak stochasticity, in the sense that the
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Figure 23. Variation of (a) σ2(n = 64) and (b) ∆K−K1
(n = 64) with τ for a stochastically perturbed

single wave, with c0 = 3 and δc = 0.1. The initial distribution consists of 33 709 points inside
f(L2,1(1)) (for ε = 0.1). The average values are determined from an ensemble of eight realizations;
the error bars are given by the standard deviation. In (b), the spectrum is computed using
interparticle separations from 0 to 20 on a grid of 100 000 points.

streamline topology is only slightly disturbed. The results may be quite different for
strong stochasticity (cf. Liu, Muzzio & Peskin 1994).)

7. Discussion
7.1. Summary

In this paper, we have derived and analysed a new model of chaotic mixing and
transport in Rossby-wave critical layers. This work was motivated by the problem of
dynamical consistency in previous two-wave models and by the need for a quantitative
characterization of mixing and transport. The Stewartson–Warn–Warn solution from
Rossby-wave critical-layer theory has been used to derive a model that is dynamically
consistent to leading order in the wave amplitudes, and several quantitative diagnostics
have been used to characterize mixing and transport separately.

The rate and spatial extent of transport have been characterized with lobe dynamics
(figure 6) and the mean-square dispersion (figure 9), respectively. Initial distributions
bounded by the perturbed and unperturbed separatrices have been used. It has been
found that the time evolution of the transport fluxes depends on the location of
the initial distribution relative to the turnstile (i.e. the perturbed separatrix). For
initial distributions located entirely to one side of the turnstile, there are two power-
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law decay regimes; for an initial distribution straddling the turnstile, there is only
one. Regarding the spatial extent of transport, the mean-square dispersion initially
increases but is approximately independent of n for large n. The initial rate of increase
is much greater for a distribution straddling the turnstile than for one located entirely
to one side of it. The saturation of the mean-square dispersion is a consequence of
the phase-space geometry of 1.5 degree-of-freedom Hamiltonian systems: invariant
tori are barriers to transport. These results underscore the importance of the initial
tracer distribution and the markedly non-diffusive nature of transport in the two-wave
model; they are also consistent with numerical calculations of stratospheric tracer
trajectories (Schoeberl & Bacmeister 1993).

Mixing has been characterized by isotropic power spectra of the interparticle
spacing (figure 10). The first two moments of the spectra have been used as prox-
ies for mixing (figure 11). They clearly demonstrate that mixing in the two-wave
model is a two-step process: small scales are developed first, and homogenized
later. The lack of homogenization in the unperturbed ε = 0 (pure stirring) case is
striking.

The parameter dependence of mixing and transport has been examined with a
Melnikov analysis as the starting point. A Melnikov analysis is applicable to trans-
port inasmuch as it describes the phase-space transport in the vicinity of the the
perturbed separatrix; however, it does not take the initial tracer distribution into
account and, as such, contains no information about its time development. This is
highlighted by figure 14(b). In addition, while the Melnikov analysis predicts that the
mean-square dispersion varies linearly with ε, we find a strongly nonlinear (although
monotonic) dependence (figure 13). With respect to mixing (figure 15), direct numer-
ical computations indicate that the mixing (up to a given time) is not a monotonic
function of ε. As is consistent with previous studies (cf. Aref & Balachandar 1986),
the mixing is optimized for a particular value of the perturbation. We have argued
that the existence of an optimal value of ε is a consequence of a balance between
two competing effects. As ε increases, both the stretching rates and the area of the
chaotic region increase; however, the stretching rates rapidly saturate with ε (figure
16), causing the mixing to decrease beyond a certain point. These mixing results are
in marked contrast to what would be predicted by typical parameterizations. With a
mixing-length type parameterization (e.g. Tennekes & Lumley 1972), the eddy flux is
an increasing (in fact quadratic) function of the eddy amplitude.

We have investigated the robustness of these results by introducing multiplicative
noise. (To be precise, the phase speed of the transient wave has been stochastically
perturbed.) One expects that stochasticity and chaotic advection should have roughly
similar effects. This has indeed been observed, though with some notable caveats.
Provided that the stochasticity is sufficiently weak and the transient (chaotic) pertur-
bation sufficiently strong, there is the same general behaviour (figure 20): for finite
times, transport increases and mixing decreases as the stochasticity increases (i.e. as
the autocorrelation time of the multiplicative noise is reduced). Despite the fact that
the system is non-periodic, the nature of the mixing does indeed inherit something
from the underlying chaotic mixing. The decrease in the mixing is largely a result
of a decrease in the ensemble-averaged finite-time Liapunov exponent caused by
the stochastic perturbation (figure 21); similar behaviour in the diagnostics and the
spectra is observed for a stochastically perturbed single-wave model, in which mixing
is generated purely by stochasticity (figure 23). The main difference in this case is
that the mean-square dispersion is a quasi-monotonic function of the autocorrelation
time.
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7.2. Physical applicability

We now wish to discuss the physical applicability of our model. We expect that it
should be of use in the stratospheric context because the SWW solution, upon which
it is based, is thought to be a useful conceptual model of Rossby-wave breaking in
the stratosphere. A number of recent studies (e.g. Pierce & Fairlie 1993; Bowman
1993; Waugh et al. 1994) have shown that chaotic advection takes place around
the polar vortex though a precise physical mechanism has yet to be identified. Our
model postulates that chaotic advection in the stratospheric polar vortex results from
interactions between a stationary wave and a transient wave. While this is a very
crude model, there is some observational support for it (see e.g. Manney, Farrara &
Mechoso 1991). The nonlinear interactions between stationary and transient waves
also play a central role in the numerical study of Salby (1992). The principal result of
Salby’s study, that eddy transport increases when the critical lines of the stationary
and transient waves are close together, is entirely consistent with ours. Stationary–
transient interactions are also present in numerical simulations of a barotropically
unstable circumpolar vortex (e.g. Ishioka & Yoden 1995).

Despite its highly simplified nature, the model does capture several important
features seen in recent studies of stratospheric mixing and transport. There are
barriers to transport. There are regions where mixing is strong and homogenization
rapid, as well as regions where mixing is weak and there is only filamentation.
Most importantly, the model captures the crucial idea that mixing and transport are
markedly non-diffusive, and that their time evolution is very dependent on the initial
tracer distribution.

The fact that the development of small scales is a precondition of mixing implies
that models with insufficient development (and resolution) of small scales will require
unrealistically large diffusivities in order to attain a given flux. This has particularly
serious implications for applications to atmospheric chemistry (see e.g. Pierrehumbert
& Yang 1993). One of the major problems with present-day atmospheric and
(especially) oceanic general circulation models is their excessive diffusivity.

One problem that could limit the model’s physical applicability is the shear in-
stability of the SWW solution (Killworth & McIntyre 1985). The instability has its
origin in the wrap-up of the vorticity contours, and its effects are quite violent in the
SWW limit. However, for finite µ, µ being the ratio of the natural length scale to the
wavelength of the solution, the cat’s eye structure persists (Haynes 1989): the shear
instability is suppressed by straining from the background flow (Dritschel et al. 1991).
This straining should be even stronger in chaotic regions. (Moreover, because of the
time-dependent northern boundary condition of the two-wave model, the instability
should be weaker than for the SWW solution.) Even if the instability were to occur,
it would likely be spatially localized and it will of course saturate; thus, it may not
have much effect on mixing and transport. Failing that, the instability could, possibly,
be parameterized as a stochastic forcing.

Notwithstanding this, objections to the model could be raised on the basis that
the assumptions required by the SWW solution are so stringent that few real flows
would satisfy them. Still, the physical mechanism underlying the SWW solution –
that advection by waves is as important as advection by the basic state and that
there exist cat’s eyes with stagnation points and closed streamlines – is robust and
should extend beyond the model’s formal range of validity. It has been observed
in contour advection calculations (e.g. Norton 1994; Waugh & Plumb 1994) that
the development of small scales depends mainly on the large-scale flow; this is
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precisely the viewpoint that we have tried to formalize in the derivation of our
model.

Apart from the stratospheric context, chaotic mixing and transport in the presence
of a non-zero potential vorticity gradient may be relevant to other geophysical
situations where, as in our case, the flow in one (inner) region is essentially kinematic
and determined by the dynamics in another (outer) region. A possible example is
the oceanic Gulf Stream, where the upper-level potential-vorticity gradients are much
stronger than the lower-level gradients (Bower & Lozier 1994). It is conceivable that,
driven by disturbances in the upper (near-surface) levels of the Gulf Stream, chaotic
mixing and transport could occur in the lower levels. This situation is reminiscent
of weakly nonlinear baroclinic instability in the two-layer quasi-geostrophic model
(Warn & Gauthier 1989).
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Appendix A. The SWW solution
A brief derivation of the SWW solution following Stewartson (1978) and Killworth

& McIntyre (1985) is presented. SWW begin with the barotropic vorticity equation
for inviscid incompressible flow on the β-plane,

Dq

Dt
= 0, (A 1)

where q = βy + ∇2ψ is (to within a constant) the absolute vorticity, ψ is the stream
function, and D/Dt = ∂/∂t+ ∂(ψ, ·) is the material derivative. Taking the basic state
to be a linear shear flow U = Λy, and assuming the perturbation amplitude ε to be
small,

ψ = − 1
2
Λy2 + εφ(x, y, t). (A 2)

Scaling length by Λ/β, time by Λ−1, and φ by Λ3/β2, (A 1) becomes

∇2φt + y∇2φx + φx + ε(φx∇2φy − φy∇2φx) = 0.

Assuming that the x-wavelength 2π/m of the solutions is much greater than the
natural lengthscale Λ/β, i.e.

µ =
Λm

β
� 1, (A 3)

then to leading order in µ,(
∂

∂t
+ y

∂

∂x

)
∂2φ

∂y2
− ε

(
∂φ

∂x

∂3φ

∂y3
− ∂φ

∂y

∂3φ

∂x∂y2

)
+
∂φ

∂x
= 0 (A 4)

after rescaling x and t by µ. Thus t is now a slow time and x is now a stretched
variable; the solutions have a small aspect ratio (i.e. the critical layer is very narrow).

It can be shown that the leading-order approximation to the linear solution of
(A 4) is steady for t � 1. At times t = O(ε−1/2), however, the linear solution breaks
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down within a critical layer of thickness O(ε1/2). The nonlinear evolution (for y 6= 0)
is then given by

φ = 2A(x, τ) | y |1/2 K1

(
2 | y |1/2

)
, y < 0 ,

φ = B(x, τ)y1/2J1(2y
1/2) + C(x, τ)y1/2Y1(2y

1/2), y > 0 ,

where A,B, C are functions to be determined, J1, K1, Y1 are Bessel functions, and
τ = ε1/2t. The functions A,B, C must obey matching conditions across the critical
layer (i.e. between the nonlinear critical layer and the linear outer region). From the
matching conditions, the northern boundary condition may be re-expressed as

− πA(x, τ)Y1(2y
1/2
o ) + B(x, τ)J1(2y

1/2
o ) = a

cos x

y
1/2
o

. (A 5)

To obtain an equation for the critical-layer evolution, a stretched variable Y = ε−1/2y
is introduced. Writing the perturbation stream function as

φ = A(x, τ)
[
1− 1

2
Y ε1/2(log ε+ 4γ − 2)

]
+ ε1/2Ψ (x, τ, Y ) + O(ε log ε),

∂2Ψ

∂Y 2
= ζ1(x, τ, Y ) ,

where γ is Euler’s constant, and ζ1(x, τ, Y ) is the leading-order approximation to the
scaled relative vorticity ∇2φ inside the critical layer, SWW show that

∂ζ1

∂τ
+ Y

∂ζ1

∂x
+
∂A

∂x

∂ζ1

∂Y
+
∂A

∂x
= 0. (A 6)

The SWW solution is obtained from (A 6) with one final approximation – that the
response be monochromatic. Although the forcing is monochromatic, the response
need not be so in general; in the large-τ limit, however, it is not unreasonable to
expect that there will be a steady monochromatic response. Therefore, SWW choose
the northern boundary position yo such that A(x, τ) is independent of τ. With

J1(2y
1/2
o ) = 0, Y1(2y

1/2
o ) 6= 0 , (A 7)

and an appropriate choice of a, it follows from (A 5) that the response is indeed
monochromatic, namely

A(x) = cos x .

This yields {
∂

∂τ
− ∂Ψ0

∂Y

∂

∂x
+
∂Ψ0

∂x

∂

∂Y

}
q = 0, (A 8)

where q = Y + ζ1 is the first approximation to the (scaled) absolute vorticity in the
critical layer and the advecting stream function Ψ0 is given by

Ψ0 = − 1
2
Y 2 + cos x. (A 9)

According to (A 8), the q-field is wrapped up by the cat’s eye structure (A 9) like
“spaghetti on a fork” (Killworth & McIntyre 1985; cf. figure 2a).

Appendix B. Lobe dynamics fluxes for the two-wave model
In this Appendix, we sketch the derivation of the lobe dynamics fluxes (3.1)–(3.2).
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Defining Lk,j(n) to be the lobe that carries tracers from region k to region j on the
nth iterate of the Poincaré map (Wiggins 1992, theorem 2.5):

ai,j(n) =

NR∑
k=1

[
µ

(
Lik,j(n)

)
− µ
(
Lij,k(n)

)]
, (B 1)

where NR denotes the number of regions. The area of the lobe Lk,j(n), i.e. µ
(
Lk,j(n)

)
,

can be evaluated using (Wiggins 1992, theorem 2.6):

µ

(
Lik,j(n)

)
=

NR∑
s=1

n−1∑
l=0

µ

(
Lk,j(1)

⋂
fl
(
Li,s(1)

))
−

NR∑
s=1

n−1∑
l=1

µ

(
Lk,j(1)

⋂
fl
(
Ls,i(1)

))
.

(B 2)

We illustrate this procedure for a1,2(n). Applying (B 1),

a1,2(n) =

3∑
k=1

[
µ

(
L1
k,2(n)

)
− µ
(
L1

2,k(n)

)]

= µ

(
L1

1,2(n)

)
− µ
(
L1

2,1(n)

)
+ µ

(
L1

3,2(n)

)
− µ
(
L1

2,3(n)

)
, (B 3)

where we have used the fact that L1,1(n) = L2,2(n) = ∅ by definition. From (B 2),

µ

(
L1

1,2(n)

)
=

3∑
s=1

n−1∑
l=0

µ

(
L1,2(1)

⋂
fl
(
L1,s(1)

))
−

3∑
s=1

n−1∑
l=1

µ

(
L1,2(1)

⋂
fl
(
Ls,1(1)

))

=

n−1∑
l=0

µ

(
L1,2(1)

⋂
fl
(
L1,2(1)

))
−

n−1∑
l=1

µ

(
L1,2(1)

⋂
fl
(
L2,1(1)

))
,

where we have used L1,3(n) = L3,1(n) = ∅. Simplifying the last equation,

µ

(
L1

1,2(n)

)
= µ

(
L1,2(1)

)
+

n−1∑
l=1

[
µ

(
L1,2(1)

⋂
fl
(
L1,2(1)

))
−µ
(
L1,2(1)

⋂
fl
(
L2,1(1)

))]
.

Repeating this procedure for the other terms in (B 3), one then obtains

a1,2(n) = µ
(
L1,2(1)

)
+

n−1∑
l=1

[
µ

(
L1,2(1)

⋂
fl
(
L1,2(1)

))
− µ
(
L1,2(1)

⋂
fl
(
L2,1(1)

))
+µ

(
L2,1(1)

⋂
fl
(
L2,1(1)

))
− µ
(
L2,1(1)

⋂
fl
(
L1,2(1)

))
+µ

(
L3,2(1)

⋂
fl
(
L1,2(1)

))
− µ
(
L3,2(1)

⋂
fl
(
L2,1(1)

))
+µ

(
L2,3(1)

⋂
fl
(
L2,1(1)

))
− µ
(
L2,3(1)

⋂
fl
(
L1,2(1)

))]
. (B 4)

a2,3(n) and a1,3(n) can be calculated similarly.
Conservation of area and conservation of species may be written as

NR∑
i=1

ai,j(n) = 0 and

NR∑
j=1

ai,j(n) = 0 , (B 5)
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respectively. It then follows that

a2,1(n) + a3,1(n) = a1,2(n) + a1,3(n) , a1,3(n) + a2,3(n) = a3,1(n) + a3,2(n) . (B 6)

Thus if a1,3(n) = a3,1(n) = 0, which is approximately the case when the lower separatrix
splitting is small,

a1,2(n) = a2,1(n) , a2,3(n) = a3,2(n) . (B 7)

In other systems, some of the turnstile intersections are identically zero; we have
retained all the terms in (B 4). With periodic boundary conditions, all turnstile inter-
sections are, at least in principle, possible. When the domain is spatially unbounded,
some intersections (e.g. self-intersections) do not occur because lobes no longer wrap
up. By analogy with the oscillating vortex pair flow of RLW (see Wiggins 1992, §2.4),
it can then be shown that

µ

(
L1

2,1(n)

)
=

n−1∑
l=1

[
µ

(
L2,1(1)

⋂
fl
(
L1,2(1)

))
− µ
(
L2,1(1)

⋂
fl
(
L2,1(1)

))]
= 0 (B 8)

for an unbounded domain. In words, tracers that escape from region 1 into region
2 never return. This would imply irreversible transport of species 1 into region 2,
something that does not occur for periodic boundary conditions.
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